Kernel PCA for similarity invariant shape recognition
نویسنده
چکیده
We present in this paper a novel approach for shape description based on kernel principal component analysis (KPCA). The strength of this method resides in the similarity (rotation, translation and particularly scale) invariance of KPCA when using a family of triangular conditionally positive definite kernels. Beside this invariance, the method provides an effective way to capture non-linearities in shape geometry. A given two-dimensional curve is described using the eigenvalues of the underlying manifold modeled in a high-dimensional Hilbert space. Using Fourier analysis, we will show that this eigenvalue description captures low to high variations of the shape frequencies. Experiments conducted on standard databases including the SQUID, the Swedish and the Smithsonian leaf databases, show that the method is effective in capturing invariance and generalizes well for shape matching and retrieval.
منابع مشابه
Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models
Principal component analysis (PCA) is a popular tool for linear dimensionality reduction and feature extraction. Kernel PCA is the nonlinear form of PCA, which better exploits the complicated spatial structure of high-dimensional features. In this paper, we first review the basic ideas of PCA and kernel PCA. Then we focus on the reconstruction of pre-images for kernel PCA. We also give an intro...
متن کاملPalmprint Recognition by Applying Wavelet Subband Representation and Kernel PCA
This paper presents a novel Daubechies-based kernel Principal Component Analysis (PCA) method by integrating the Daubechies wavelet representation of palm images and the kernel PCA method for palmprint recognition. The palmprint is first transformed into the wavelet domain to decompose palm images and the lowest resolution subband coefficients are chosen for palm representation. The kernel PCA ...
متن کاملLocal Image Descriptors Using Supervised Kernel ICA
PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminative representation for recognition due to its global feature nature and unsupervised algorithm. In addition, linear methods such as PCA and ICA can fail in the case of non-linearity. In this paper, we propose a new discr...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملMetric Approaches to Invariant Shape Similarity
Non-rigid shapes are ubiquitous in Nature and are encountered at all levels of life, from macro to nano. The need to model such shapes and understand their behavior arises in many applications in imaging sciences, pattern recognition, computer vision, and computer graphics. Of particular importance is understanding which properties of the shape are attributed to deformations and which are invar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2007